
Process Dynamics, Modeling, and ControlDynamic Modeling, Simulation and Control of Energy GenerationThe Dynamic Modeling and Control of a Non-isothermal Spouted Bed ReactorDynamic Modeling and Control of Engineering SystemsDynamic Modeling, Simulation and Control of Energy GenerationDynamic Modeling and Control of Engineering Systems System DynamicsOutlines and Highlights for Dynamic Modeling and Control of Engineering Systems by Bohdan T KulakowskiDynamic modeling and control of robotic manipulatorsFundamentals in Modeling and Control of Mobile ManipulatorsModeling and Control of Discrete-event Dynamic SystemsUnmanned Aerial Vehicles: Breakthroughs in Research and PracticeDynamic Modeling and Active Vibration Control of StructuresFuel CellsDynamic Modeling and Control of Random Dynamic SystemsDynamic Modeling and Control of Large Flexible StructuresDynamic Modeling and Control of Piezoelectric Actuators in a Two-stage Actuation SchemeStudyguide for Dynamic Modeling and Control of Engineering Systems by Kulakowski, Bohdan T.Dynamic Modeling and Control of a Novel XY Positioning Stage for Semiconductor PackagingDynamic Models and Control of Biological SystemsMobile manipulators combine the advantages of mobile platforms and robotic arms, extending their operational range and functionality to large spaces and remote, demanding, and/or dangerous environments. They also bring complexity and difficulty in dynamic modeling and control system design. However, advances in nonlinear system analysis and control system design offer powerful tools and concepts for the control of mobile manipulator systems. Fundamentals in Modeling and Control of Mobile Manipulators presents a thorough theoretical treatment of several fundamental problems for mobile robotic manipulators. The book integrates fresh concepts and state-of-the-art results to systematically examine kinematics and dynamics, motion generation, feedback control, coordination, and cooperation. From this treatment, the authors propose novel control theory concepts and techniques to tackle key problems. Topics covered include kinematic and dynamic modeling, control of nonholonomic systems, path planning that considers motion and manipulation, hybrid motion/force control and hybrid position/force control where the mobile manipulator is required to interact with environments, and coordination and cooperation strategies for multiple mobile manipulators. The book also includes practical examples of applications in engineering systems. This timely book investigates important scientific and engineering issues for researchers and engineers working with either single or multiple mobile manipulators for larger operational space, better cooperation, and improved productivity. This book addresses the core issues involved in the dynamic modeling, simulation and control of a selection of energy systems such as gas turbines, wind turbines, fuel cells and batteries. The principles of modeling and control could be applied to other non-convention methods of energy generation such as solar energy and wave energy. A central feature of Dynamic Modeling, Simulation and Control of Energy Generation is that it brings together diverse topics in thermodynamics, fluid mechanics, heat transfer, electrochemistry, electrical networks and electrical machines and focuses on their applications in the field of energy generation, its control and regulation. This book will help the reader understand the methods of modelling energy systems for controller design application as well as gain a basic understanding of the processes involved in the design of control systems and regulators. It will also be a useful guide to simulation of the dynamics of energy systems and for implementing monitoring systems based on the estimation of internal system variables from measurements of the observable system variables. Dynamic modeling, simulation and control of energy generation will serve as a useful tool to designers of hybrid power generating systems involving advanced technology systems such as floating or offshore wind turbines and fuel cells. The book introduces cases studies of the practical control laws for a variety of energy generation systems based on nonlinear dynamic models without relying on linearization. Also the book introduces the reader to the use nonlinear model based estimation techniques and their application to energy systems. System Dynamics is a cornerstone resource for engineers faced with the evermore-complex job of designing mechatronic systems involving any number of electrical, mechanical, hydraulic, pneumatic, thermal, and magnetic subsystems. This updated Fourth Edition offers the latest coverage on one of the most important design topics today—bond graph modeling—the powerful, unified graphic modeling language. The only comprehensive guide to modeling, designing, simulating, and analyzing dynamic systems comprising a variety of technologies and energy domains, System Dynamics, Fourth Edition continues the previous edition's step-by-step approach to creating dynamic models. (Midwest).Mathematical Biology has grown at an astonishing rate and has established itself as a distinct discipline. Mathematical modeling is now being applied in every major discipline in the biological sciences. Though the field has become increasingly large and specialized, this book remains important as a text that introduces some of the exciting problems which arise in the biological sciences and gives some indication of the wide spectrum of questions that modeling can address. This textbook is ideal for a course in Engineering System Dynamics and Controls. The work is a comprehensive treatment of the analysis and lumped parameter physical systems. Starting with a discussion of the mathematical models in general, and ordinary differential equations, the book covers input/output and state space models, computer simulation and modeling methods and techniques, electrical, thermal and fluid domains. Frequency domain analysis, transfer functions and frequency response are covered in detail. The book concludes with a treatment of stability, feedback control (PID, lead-lag, root locus) and an introduction to discrete time systems. This new edition features many new and expanded sections on such topics as: Solving Stiff Systems, Operational Amplifiers, Electrohydraulic Servovalves, Using Matlab with Transfer Functions, Using Matlab with Frequency Response, Matlab Tutorial and an expanded Simulink Tutorial. The work has 40% more end-of-chapter exercises and 30% more examples. This book describes the active vibration control techniques which have been developed to suppress excessive vibrations of structures. It covers the fundamental principles of active control methods and their applications and shows how active vibration control techniques have replaced traditional passive vibration control. The book includes coverage of dynamic modeling, control design, sensing methodology, actuator mechanism and electronic circuit design, and the implementation of control algorithms via digital controllers. An in-depth approach has been taken to describe the modeling of structures for control design, the development of control algorithms suitable for structural control, and the implementation of control algorithms by means of Simulink block diagrams. Datasets have been currently available actuator and sensor models have been provided based on the most recent advances in the field. The book is used as a textbook for students and a reference for researchers who are interested in studying cutting-edge technology. It will be a valuable resource for academic and industrial researchers and professionals involved in the design and manufacture of active vibration controllers for structures in a wide variety of fields and industries including the automotive, rail, aerospace, and civil engineering
This textbook is ideal for a course in engineering systems dynamics and controls. The work is a comprehensive treatment of the analysis of lumped parameter physical systems. Starting with a discussion of mathematical models in general, and ordinary differential equations, the book covers input/output and state space models, computer simulation and modeling methods and techniques in mechanical, electrical, thermal, and fluid dynamics. Frequency domain methods, transfer functions, root locus and an introduction to discrete time systems. This new edition features many new and expanded sections on such topics as: solving stiff systems, operational amplifiers, electrohydraulic servovalves, using Matlab with transfer functions, using Matlab with frequency response, Matlab tutorial and an expanded Simulink tutorial. The work has 40% more end-of-chapter exercises and 30% more examples.

Never HIGHLIGHT a Book Again. Includes all testable terms, concepts, persons, places, and events. Cram101 Textbook Reproductions does not currently provide digital versions of this title.

This textbook is ideal for a course in engineering systems dynamics and controls. The work is a comprehensive treatment of the analysis of lumped parameter physical systems. Starting with a discussion of mathematical models in general, and ordinary differential equations, the book covers input/output and state space models, computer simulation and modeling methods and techniques in mechanical, electrical, thermal, and fluid dynamics. Frequency domain methods, transfer functions, root locus and an introduction to discrete time systems. This new edition features many new and expanded sections on such topics as: solving stiff systems, operational amplifiers, electrohydraulic servovalves, using Matlab with transfer functions, using Matlab with frequency response, Matlab tutorial and an expanded Simulink tutorial. The work has 40% more end-of-chapter exercises and 30% more examples.
well as the fundamentals of Fuel Cell Systems and their components, it then presents the Linear and Nonlinear modeling of Fuel Cell Dynamics. Typical approaches of Linear and Nonlinear Modeling and Control Design methods for Fuel Cells are also discussed. The authors explore the Simulink implementation of Fuel Cells, including the modeling of PEM Fuel Cells and Control Designs. They cover the applications of Fuel cells in vehicles, utility power systems, and stand-alone systems, which integrate Fuel Cells, Wind Power, and Solar Power. Mathematical preliminaries on Linear and Nonlinear Control are provided in an appendix. From controlling disease outbreaks to predicting heart attacks, dynamic models are increasingly crucial for understanding biological processes. Many universities are starting undergraduate programs in computational biology to introduce students to this rapidly growing field. In Dynamic Models in Biology, the first text on dynamic models specifically written for undergraduate students in the biological sciences, ecologist Stephen Ellner and mathematician John Guckenheimer teach students how to understand, build, and use dynamic models in biology. Developed from a course taught by Ellner and Guckenheimer at Cornell University, the book is organized around biological applications, with mathematics and computing developed through case studies at the molecular, cellular, and population levels. The authors cover both simple analytic models—the sort usually found in mathematical biology texts—and the complex computational models now used by both biologists and mathematicians. Linked to a Web site with computer-lab materials and exercises, Dynamic Models in Biology is a major new introduction to dynamic models for students in the biological sciences, mathematics, and engineering. Abstract: With the huge advancements in miniature sensors, actuators and processors depending mainly on the Micro and Nano-Electro-Mechanical-Systems (MEMS/NEMS), many researches are now focusing on developing miniature flying vehicles to be used in both research and commercial applications. This thesis work presents a detailed mathematical model for a Vertical Takeoff and Landing (VTOL) Unmanned Aerial Vehicle (UAV) known as the quadrotor. The nonlinear dynamic model of the quadrotor is formulated using the Newton-Euler method, the formulated model is detailed including aerodynamic effects and rotor dynamics that are omitted in many literature. The motion of the quadrotor can be divided into two subsystems: a rotational subsystem (altitude and heading) and a translational subsystem (altitude and x and y motion). Although the quadrotor is a 6 DOF underactuated system, the derived rotational subsystem is fully actuated, while the translational subsystem is underactuated. The derivation of the mathematical model is followed by the development of four control approaches to control the altitude, heading, and position of the quadrotor in space. The first approach is based on the Linear Proportional-Derivative-Integral (PID) controller. The second control approach is based on the nonlinear Sliding Mode Controller (SMC). The third developed controller is a nonlinear Backstepping controller while the fourth is a Gain Scheduling (PID) controller. The parameters and gains of the aforementioned controllers were tuned using Genetic Algorithm (GA) technique to improve the systems dynamic response. Simulation based experiments were conducted to evaluate and compare the performance of the four developed control techniques in terms of dynamic performance, stability and the effect of possible disturbances. The high temperature solid oxide fuel cell (SOFC) is identified as one of the leading fuel cell technology contenders to capture the energy market in years to come. However, in order to operate as an efficient energy generating system, the SOFC requires an appropriate control system which in turn requires a detailed modelling of process dynamics. Introducing state-of-the-art dynamic modelling, estimation, and control of SOFC systems, this book presents original modelling methods and brand new results as developed by the authors. With comprehensive coverage and bringing together many aspects of SOFC technology, it considers dynamic modelling through first-principles and data-based approaches, and considers all aspects of control, including modelling, system identification, state estimation, conventional and advanced control. Key features: Discusses both planar and tubular SOFC, and detailed and simplified dynamic modelling for SOFC Systematically describes single model and distributed models from cell level to system level Provides parameters for all models developed for easy reference and reproducing of the results All theories are illustrated through vivid fuel cell application examples, such as state-of-the-art unscanted Kalman filter, model predictive control and system identification techniques to SOFC systems The tutorial approach makes it perfect for learning the fundamentals of chemical engineering, system identification, state estimation and process control. It is suitable for graduate students in chemical, mechanical, power, and electrical engineering, especially those in process control, process systems engineering, control systems, or fuel cells. It will also aid researchers who need a reminder of the basics as well as an overview of current techniques in the dynamic modelling and control of SOFC. This textbook is ideal for an undergraduate course in Engineering Systems Dynamics and Controls. It is restricted to lumped parameter models, which are those models in which time is the only independent variable. It assumes a basic knowledge of engineering mechanics and ordinary differential equations. The new edition has expanded topical coverage and many more new examples and exercises. Never HIGHLIGHT a Book Again! Virtually all of the testable terms, concepts, persons, places, and events from the textbook are included. Cram101 Just the FACTS101 studyguides give all of the outlines, highlights, notes, and quizzes for your textbook with optional online practice tests. Only Cram101 has Textbook Specific. Accompnying: 9780521864350. This book reports on an outstanding research devoted to modeling and control of dynamic systems using fractional-order calculus. It describes the development of model-based control design methods for systems described by fractional dynamic models. More than 300 years had passed since Newton and Leibniz developed a set of mathematical tools we now know as calculus. Ever since then the idea of non-integer derivatives and integrals, universally referred to as fractional calculus, has been of interest to many researchers. However, due to various issues, the usage of fractional-order models in real-life applications was limited. Advances in modern computer science made it possible to apply efficient numerical methods to the computation of fractional derivatives and integrals. This book describes novel methods developed by the author for fractional modeling and control, together with their successful application in real-world process control scenarios. This textbook is ideal for an undergraduate course in Engineering Systems Dynamics and Controls. It is intended to provide the reader with a thorough understanding of the process of creating mathematical (and computer-based) models of physical systems. The material is restricted to lumped parameter models, which are those models in which time is the only independent variable. It assumes a basic knowledge of engineering mechanics and ordinary differential equations. The new edition has expanded topical coverage and many more new examples and exercises. A typical design procedure for model predictive control or control performance monitoring consists of: 1. identification of a parametric or nonparametric model; 2. derivation of the output predictor from the model; 3. design of the controller law or calculation of performance indices according to the predictor. Both design problems need an explicit model form and both require this three-step design procedure. Can this design procedure be simplified? Can an explicit model be avoided? With these questions in mind, the authors eliminate the first and second step of the above design procedure, a “data-driven” approach in the sense that no traditional parametric models are used; hence, the intermediate subspace matrices, which are obtained from the process data and otherwise identified as a first step in the subspace identification methods, are used directly for the designs. Without using an explicit model, the design procedure is simplified and the modelling error caused by parameterization is eliminated.